An Artificial Life Approach for Semi-supervised Learning

نویسندگان

  • Lutz Herrmann
  • Alfred Ultsch
چکیده

An approach for the integration of supervising information into unsupervised clustering is presented (semi supervised learning). The underlying unsupervised clustering algorithm is based on swarm technologies from the field of Artificial Life systems. Its basic elements are autonomous agents called Databots. Their unsupervised movement patterns correspond to structural features of a high dimensional data set. Supervising information can be easily incorporated in such a system through the implementation of special movement strategies. These strategies realize given constraints or cluster informations. The system has been tested on fundamental clustering problems. It outperforms constrained k-means.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Semi-Supervised Classification of Non-Functional Requirements: An Empirical Analysis

The early detection and classification of non-functional requirements (NFRs) is not only a hard and time consuming process, but also crucial in the evaluation of architectural alternatives starting from initial design decisions. In this paper, we propose a recommender system based on a semi-supervised learning approach for assisting analysts in the detection and classification of NFRs from text...

متن کامل

Extracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering

Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...

متن کامل

Graph-Based Discrete Differential Geometry for Critical Instance Filtering

Graph theory has been shown to provide a powerful tool for representing and tackling machine learning problems, such as clustering, semi-supervised learning, and feature ranking. This paper proposes a graph-based discrete differential operator for detecting and eliminating competence-critical instances and class label noise from a training set in order to improve classification performance. Res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007